Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Blood Adv ; 7(12): 2855-2871, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-36521101

ABSTRACT

Acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric patients. Adoptive cell therapy by chimeric antigen receptor (CAR)-engineered T cells demonstrated a high therapeutic potential, but further development is required to ensure a safe and durable disease remission in AML, especially in elderly patients. To date, translation of CAR T-cell therapy in AML is limited by the absence of an ideal tumor-specific antigen. CD123 and CD33 are the 2 most widely overexpressed leukemic stem cell biomarkers but their shared expression with endothelial and hematopoietic stem and progenitor cells increases the risk of undesired vascular and hematologic toxicities. To counteract this issue, we established a balanced dual-CAR strategy aimed at reducing off-target toxicities while retaining full functionality against AML. Cytokine-induced killer (CIK) cells, coexpressing a first-generation low affinity anti-CD123 interleukin-3-zetakine (IL-3z) and an anti-CD33 as costimulatory receptor without activation signaling domains (CD33.CCR), demonstrated a powerful antitumor efficacy against AML targets without any relevant toxicity on hematopoietic stem and progenitor cells and endothelial cells. The proposed optimized dual-CAR cytokine-induced killer cell strategy could offer the opportunity to unleash the potential of specifically targeting CD123+/CD33+ leukemic cells while minimizing toxicity against healthy cells.


Subject(s)
Interleukin-3 , Leukemia, Myeloid, Acute , Humans , Child , Aged , Interleukin-3/metabolism , Endothelial Cells/metabolism , T-Lymphocytes , Cell Line, Tumor , Leukemia, Myeloid, Acute/pathology
2.
Blood Adv ; 6(22): 5938-5949, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36037515

ABSTRACT

NPM1 is the most frequently mutated gene in adults with acute myeloid leukemia (AML). The interaction between mutant NPM1 (NPM1c) and exportin-1 (XPO1) causes aberrant cytoplasmic dislocation of NPM1c and promotes the high expression of homeobox (HOX) genes, which is critical for maintaining the leukemic state of NPM1-mutated cells. Although there is a rationale for using XPO1 inhibitors in NPM1-mutated AML, selinexor administered once or twice per week did not translate into clinical benefit in patients with NPM1 mutations. Here, we show that this dosing strategy results in only a temporary disruption of the XPO1-NPM1c interaction, limiting the efficacy of selinexor. Because the second-generation XPO1 inhibitor eltanexor can be administered more frequently, we tested the antileukemic activity of prolonged XPO1 inhibition in NPM1-mutated AML models. Eltanexor caused irreversible HOX downregulation, induced terminal AML differentiation, and prolonged the survival of leukemic mice. This study provides essential information for the appropriate design of clinical trials with XPO1 inhibitors in NPM1-mutated AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Mice , Animals , Gene Expression Regulation, Leukemic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
3.
Biomolecules ; 12(7)2022 06 28.
Article in English | MEDLINE | ID: mdl-35883460

ABSTRACT

The administration of combinations of drugs is a method widely used in the treatment of different pathologies as it can lead to an increase in the therapeutic effect and a reduction in the dose compared to the administration of single drugs. For these reasons, it is of interest to study combinations of drugs and to determine whether a specific combination has a synergistic, antagonistic or additive effect. Various mathematical models have been developed, which use different methods to evaluate the synergy of a combination of drugs. We have developed an open access and easy to use app that allows different models to be explored and the most fitting to be chosen for the specific experimental data: SiCoDEA (Single and Combined Drug Effect Analysis). Despite the existence of other tools for drug combination analysis, SiCoDEA remains the most complete and flexible since it offers options such as outlier removal or the ability to choose between different models for analysis. SiCoDEA is an easy to use tool for analyzing drug combination data and to have a view of the various steps and offer different results based on the model chosen.


Subject(s)
Mobile Applications , Drug Combinations , Drug Synergism , Pharmaceutical Preparations
4.
Blood ; 138(25): 2696-2701, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34343258

ABSTRACT

Nucleophosmin (NPM1) mutations in acute myeloid leukemia (AML) affect exon 12, but also sporadically affect exons 9 and 11, causing changes at the protein C-terminal end (tryptophan loss, nuclear export signal [NES] motif creation) that lead to aberrant cytoplasmic NPM1 (NPM1c+), detectable by immunohistochemistry. Combining immunohistochemistry and molecular analyses in 929 patients with AML, we found non-exon 12 NPM1 mutations in 5 (1.3%) of 387 NPM1c+ cases. Besides mutations in exons 9 (n = 1) and 11 (n = 1), novel exon 5 mutations were discovered (n = 3). Another exon 5 mutation was identified in an additional 141 patients with AML selected for wild-type NPM1 exon 12. Three NPM1 rearrangements (NPM1/RPP30, NPM1/SETBP1, NPM1/CCDC28A) were detected and characterized among 13 979 AML samples screened by cytogenetic/fluorescence in situ hybridization and RNA sequencing. Functional studies demonstrated that in AML cases, new NPM1 proteins harbored an efficient extra NES, either newly created or already present in the fusion partner, ensuring its cytoplasmic accumulation. Our findings support NPM1 cytoplasmic relocation as critical for leukemogenesis and reinforce the role of immunohistochemistry in predicting AML-associated NPM1 genetic lesions. This study highlights the need to develop new assays for molecular diagnosis and monitoring of NPM1-mutated AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Mutation , Nucleophosmin/genetics , Adult , Exons , Female , Gene Fusion , Gene Rearrangement , Humans , Male , Middle Aged
5.
Leukemia ; 35(9): 2552-2562, 2021 09.
Article in English | MEDLINE | ID: mdl-33654209

ABSTRACT

Acute myeloid leukemia (AML) with mutated NPM1 accounts for one-third of newly diagnosed AML. Despite recent advances, treatment of relapsed/refractory NPM1-mutated AML remains challenging, with the majority of patients eventually dying due to disease progression. Moreover, the prognosis is particularly poor in elderly and unfit patients, mainly because they cannot receive intensive treatment. Therefore, alternative treatment strategies are needed. Dactinomycin is a low-cost chemotherapeutic agent, which has been anecdotally reported to induce remission in NPM1-mutated patients, although its mechanism of action remains unclear. Here, we describe the results of a single-center phase 2 pilot study investigating the safety and efficacy of single-agent dactinomycin in relapsed/refractory NPM1-mutated adult AML patients, demonstrating that this drug can induce complete responses and is relatively well tolerated. We also provide evidence that the activity of dactinomycin associates with nucleolar stress both in vitro and in vivo in patients. Finally, we show that low-dose dactinomycin generates more efficient stress response in cells expressing NPM1 mutant compared to wild-type cells, suggesting that NPM1-mutated AML may be more sensitive to nucleolar stress. In conclusion, we establish that dactinomycin is a potential therapeutic alternative in relapsed/refractory NPM1-mutated AML that deserves further investigation in larger clinical studies.


Subject(s)
Cell Nucleolus/drug effects , Dactinomycin/therapeutic use , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/drug therapy , Mutation , Neoplasm Recurrence, Local/drug therapy , Nuclear Proteins/genetics , Aged , Antibiotics, Antineoplastic/therapeutic use , Cell Nucleolus/pathology , Female , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Nucleophosmin , Pilot Projects , Prognosis , Remission Induction , Salvage Therapy
6.
Cancers (Basel) ; 13(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525388

ABSTRACT

NPM1-mutated (NPM1mut) acute myeloid leukemia (AML) comprises about 30% of newly diagnosed AML in adults. Despite notable advances in the treatment of this frequent AML subtype, about 50% of NPM1mut AML patients treated with conventional treatment die due to disease progression. CD123 has been identified as potential target for immunotherapy in AML, and several anti-CD123 therapeutic approaches have been developed for AML resistant to conventional therapies. As this antigen has been previously reported to be expressed by NPM1mut cells, we performed a deep flow cytometry analysis of CD123 expression in a large cohort of NPM1mut and wild-type samples, examining the whole blastic population, as well as CD34+CD38- leukemic cells. We demonstrate that CD123 is highly expressed on NPM1mut cells, with particularly high expression levels showed by CD34+CD38- leukemic cells. Additionally, CD123 expression was further enhanced by FLT3 mutations, which frequently co-occur with NPM1 mutations. Our results identify NPM1-mutated and particularly NPM1/FLT3 double-mutated AML as disease subsets that may benefit from anti-CD123 targeted therapies.

7.
Clin Cancer Res ; 25(24): 7540-7553, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31578228

ABSTRACT

PURPOSE: Ibrutinib, a Bruton tyrosine kinase inhibitor (BTKi), has improved the outcomes of chronic lymphocytic leukemia (CLL), but primary resistance or relapse are issues of increasing significance. While the predominant mechanism of action of BTKi is the B-cell receptor (BCR) blockade, many off-target effects are unknown. We investigated potential interactions between BCR pathway and NOTCH1 activity in ibrutinib-treated CLL to identify new mechanisms of therapy resistance and markers to monitor disease response. EXPERIMENTAL DESIGN: NOTCH activations was evaluated either in vitro and ex vivo in CLL samples after ibrutinib treatment by Western blotting. Confocal proximity ligation assay (PLA) experiments and analyses of down-targets of NOTCH1 by qRT-PCR were used to investigate the cross-talk between BTK and NOTCH1. RESULTS: In vitro ibrutinib treatment of CLL significantly reduced activated NOTCH1/2 and induced dephosphorylation of eIF4E, a NOTCH target in CLL. BCR stimulation increased the expression of activated NOTCH1 that accumulated in the nucleus leading to HES1, DTX1, and c-MYC transcription. Results of in situ PLA experiments revealed the presence of NOTCH1-ICD/BTK complexes, whose number was reduced after ibrutinib treatment. In ibrutinib-treated CLL patients, leukemic cells showed NOTCH1 activity downregulation that deepened over time. The NOTCH1 signaling was restored at relapse and remained activated in ibrutinib-resistant CLL cells. CONCLUSIONS: We demonstrated a strong clinical activity of ibrutinib in a real-life context. The ibrutinib clinical efficacy was associated with NOTCH1 activity downregulation that deepened over time. Our data point to NOTCH1 as a new molecular partner in BCR signaling with potential to further improve CLL-targeted treatments.


Subject(s)
Apoptosis , Biomarkers, Tumor/metabolism , Drug Resistance, Neoplasm , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptor, Notch1/metabolism , Receptors, Antigen, B-Cell/metabolism , Adenine/analogs & derivatives , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Piperidines , Protein Kinase Inhibitors/pharmacology , Receptor, Notch1/genetics , Receptors, Antigen, B-Cell/genetics , Signal Transduction , Treatment Outcome , Tumor Cells, Cultured
8.
Cell Death Dis ; 9(12): 1160, 2018 11 26.
Article in English | MEDLINE | ID: mdl-30478302

ABSTRACT

As previously reported, chronic lymphocytic leukemia (CLL) cells show constitutive Notch1/2 activation and express the Notchligand Jagged1. Despite increasing knowledge of the impact of Notch alterations on CLL biology and pathogenesis, the role of Jagged1 expressed in CLL cells remains undefined. In other cell types, it has been shown that after Notch engagement, Jagged1 not only activates Notch in signal-receiving cell, but also undergoes proteolytic activation in signal-sending cell, triggering a signaling with biological effects. We investigated whether Jagged1 expressed in CLL cells undergoes proteolytic processing and/or is able to induce Notch activation through autocrine/paracrine loops, focusing on the effect that CLL prosurvival factor IL-4 could exert on the Notch-Jagged1 system in these cells. We found that Jagged1 was constitutively processed in CLL cells and generated an intracellular fragment that translocated into the nucleus, and an extracellular fragment released into the culture supernatant. IL-4 enhanced expression of Jagged1 and its intracellular fragments, as well as Notch1/2 activation. The IL-4-induced increase in Notch1/2 activation was independent of the concomitant upregulated Jagged1 levels. Indeed, blocking Notch-Jagged1 interactions among CLL cells with Jagged1 neutralizing antibodies did not affect the expression of the Notch target Hes1. Notably, anti-Jagged1 antibodies partially prevented the IL-4-induced increase in Jagged1 processing and cell viability, suggesting that Jagged1 processing is one of the events contributing to IL-4-induced CLL cell survival. Consistent with this, Jagged1 silencing by small interfering RNA partially counteracted the capacity of IL-4 to promote CLL cell survival. Investigating the pathways whereby IL-4 promoted Notch1/2 activation in CLL cells independent of Jagged1, we found that PI3Kδ/AKT and PKCδ were involved in upregulating Notch1 and Notch2 proteins, respectively. Overall, this study provides new insights into the Notch-ligand system in CLL cells and suggests that targeting this system may be exploited as a novel/additional therapy approach for CLL.


Subject(s)
Interleukin-4/genetics , Jagged-1 Protein/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Female , Gene Expression Regulation, Leukemic/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Protein Kinase C-delta/genetics , RNA, Small Interfering/genetics , Receptor, Notch1/genetics , Receptor, Notch2/genetics , Signal Transduction
9.
Cancer Cell ; 34(3): 499-512.e9, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30205049

ABSTRACT

NPM1 is the most frequently mutated gene in cytogenetically normal acute myeloid leukemia (AML). In AML cells, NPM1 mutations result in abnormal cytoplasmic localization of the mutant protein (NPM1c); however, it is unknown whether NPM1c is required to maintain the leukemic state. Here, we show that loss of NPM1c from the cytoplasm, either through nuclear relocalization or targeted degradation, results in immediate downregulation of homeobox (HOX) genes followed by differentiation. Finally, we show that XPO1 inhibition relocalizes NPM1c to the nucleus, promotes differentiation of AML cells, and prolongs survival of Npm1-mutated leukemic mice. We describe an exquisite dependency of NPM1-mutant AML cells on NPM1c, providing the rationale for the use of nuclear export inhibitors in AML with mutated NPM1.


Subject(s)
Gene Expression Regulation, Leukemic , Homeodomain Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Aged , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , Down-Regulation , Female , Humans , Hydrazines/pharmacology , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Mutation , Nuclear Proteins/metabolism , Nucleophosmin , Proteolysis , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/metabolism , Triazoles/pharmacology , Xenograft Model Antitumor Assays , Exportin 1 Protein
10.
Blood ; 125(22): 3455-65, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25795919

ABSTRACT

Nucleophosmin (NPM1) mutations represent an attractive therapeutic target in acute myeloid leukemia (AML) because they are common (∼30% AML), stable, and behave as a founder genetic lesion. Oncoprotein targeting can be a successful strategy to treat AML, as proved in acute promyelocytic leukemia by treatment with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO), which degrade the promyelocytic leukemia (PML)-retinoic acid receptor fusion protein. Adjunct of ATRA to chemotherapy was reported to be beneficial for NPM1-mutated AML patients. Leukemic cells with NPM1 mutation also showed sensibility to ATO in vitro. Here, we explore the mechanisms underlying these observations and show that ATO/ATRA induce proteasome-dependent degradation of NPM1 leukemic protein and apoptosis in NPM1-mutated AML cell lines and primary patients' cells. We also show that PML intracellular distribution is altered in NPM1-mutated AML cells and reverted by arsenic through oxidative stress induction. Interestingly, similarly to what was described for PML, oxidative stress also mediates ATO-induced degradation of the NPM1 mutant oncoprotein. Strikingly, NPM1 mutant downregulation by ATO/ATRA was shown to potentiate response to the anthracyclin daunorubicin. These findings provide experimental evidence for further exploring ATO/ATRA in preclinical NPM1-mutated AML in vivo models and a rationale for exploiting these compounds in chemotherapeutic regimens in clinics.


Subject(s)
Apoptosis/drug effects , Arsenicals/pharmacology , Leukemia, Myeloid, Acute/metabolism , Nuclear Proteins/metabolism , Oxides/pharmacology , Tretinoin/pharmacology , Animals , Apoptosis/genetics , Arsenic Trioxide , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, SCID , Mutant Proteins/drug effects , Mutant Proteins/metabolism , Mutation , Nuclear Proteins/drug effects , Nucleophosmin , Oncogene Proteins/drug effects , Oncogene Proteins/metabolism , Tumor Cells, Cultured , U937 Cells , Xenograft Model Antitumor Assays
11.
Blood ; 116(19): 3907-22, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20634376

ABSTRACT

Acute myeloid leukemia (AML) with mutated NPM1 shows distinctive biologic and clinical features, including absent/low CD34 expression, the significance of which remains unclear. Therefore, we analyzed CD34(+) cells from 41 NPM1-mutated AML. At flow cytometry, 31 of 41 samples contained less than 10% cells showing low intensity CD34 positivity and variable expression of CD38. Mutational analysis and/or Western blotting of purified CD34(+) cells from 17 patients revealed NPM1-mutated gene and/or protein in all. Immunohistochemistry of trephine bone marrow biopsies and/or flow cytometry proved CD34(+) leukemia cells from NPM1-mutated AML had aberrant nucleophosmin expression in cytoplasm. NPM1-mutated gene and/or protein was also confirmed in a CD34(+) subfraction exhibiting the phenotype (CD34(+)/CD38(-)/CD123(+)/CD33(+)/CD90(-)) of leukemic stem cells. When transplanted into immunocompromised mice, CD34(+) cells generated a leukemia recapitulating, both morphologically and immunohistochemically (aberrant cytoplasmic nucleophosmin, CD34 negativity), the original patient's disease. These results indicate that the CD34(+) fraction in NPM1-mutated AML belongs to the leukemic clone and contains NPM1-mutated cells exhibiting properties typical of leukemia-initiating cells. CD34(-) cells from few cases (2/15) also showed significant leukemia-initiating cell potential in immunocompromised mice. This study provides further evidence that NPM1 mutation is a founder genetic lesion and has potential implications for the cell-of-origin and targeted therapy of NPM1-mutated AML.


Subject(s)
Antigens, CD34/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Mutant Proteins/genetics , Nuclear Proteins/genetics , ADP-ribosyl Cyclase 1/metabolism , Animals , Cytoplasm/metabolism , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Mutant Proteins/metabolism , Neoplasm Transplantation , Nuclear Proteins/metabolism , Nucleophosmin , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...